Unsupervised Ensemble Learning for Mining Top-n Outliers
نویسندگان
چکیده
Outlier detection is an important and attractive problem in knowledge discovery in large datasets. Instead of detecting an object as an outlier, we study detecting the n most outstanding outliers, i.e. the top-n outlier detection. Further, we consider the problem of combining the top-n outlier lists from various individual detection methods. A general framework of ensemble learning in the top-n outlier detection is proposed based on the rank aggregation techniques. A scorebased aggregation approach with the normalization method of outlier scores and an order-based aggregation approach based on the distance-based Mallows model are proposed to accommodate various scales and characteristics of outlier scores from different detection methods. Extensive experiments on several real datasets demonstrate that the proposed approaches always deliver a stable and effective performance independent of different datasets in a good scalability in comparison with the state-of-the-art literature.
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملUnsupervised Ensembles Techniques for Visualization
In this paper we introduce two unsupervised techniques for visualization purposes based on the use of ensemble methods. The unsupervised techniques which are often quite sensitive to the presence of outliers are combined with the ensemble approaches in order to overcome the influence of outliers. The first technique is based on the use of Principal Component Analysis and the second one is known...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملEnsemble-based Top-k Recommender System Considering Incomplete Data
Recommender systems have been widely used in e-commerce applications. They are a subclass of information filtering system, used to either predict whether a user will prefer an item (prediction problem) or identify a set of k items that will be user-interest (Top-k recommendation problem). Demanding sufficient ratings to make robust predictions and suggesting qualified recommendations are two si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012